Mirror descent in non-convex stochastic programming
نویسندگان
چکیده
In this paper, we examine a class of nonconvex stochastic optimization problems which we call variationally coherent, and which properly includes all quasi-convex programs. In view of solving such problems, we focus on the widely used stochastic mirror descent (SMD) family of algorithms, and we establish that the method’s last iterate converges with probability 1. We further introduce a localized version of variational coherence which ensures local convergence of SMD with high probability. These results contribute to the landscape of nonconvex stochastic optimization by showing that quasiconvexity is not essential for convergence: rather, variational coherence, a much weaker requirement, suffices. Finally, building on the above, we reveal an interesting insight regarding the convergence speed of SMD: in variationally coherent problems with sharp minima (e.g. generic linear programs), the last iterate of SMD reaches an exact global optimum in a finite number of steps (a.s.), even in the presence of persistent noise. This result is to be contrasted with existing work on black-box stochastic linear programs which only exhibit asymptotic convergence rates.
منابع مشابه
Efficient Methods for Stochastic Composite Optimization
This paper considers an important class of convex programming problems whose objective function Ψ is given by the summation of a smooth and non-smooth component. Further, it is assumed that the only information available for the numerical scheme to solve these problems is the subgradients of Ψ contaminated by stochastic noise. Our contribution mainly consists of the following aspects. Firstly, ...
متن کاملTheory of Convex Optimization for Machine Learning
This monograph presents the main mathematical ideas in convex optimization. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by the seminal book of Nesterov, includes the analysis of the Ellipsoid Method, as well a...
متن کاملValidation analysis of mirror descent stochastic approximation method
The main goal of this paper is to develop accuracy estimates for stochastic programming problems by employing stochastic approximation (SA) type algorithms. To this end we show that while running a Mirror Descent Stochastic Approximation procedure one can compute, with a small additional effort, lower and upper statistical bounds for the optimal objective value. We demonstrate that for a certai...
متن کاملStochastic Mirror Descent in Variationally Coherent Optimization Problems
In this paper, we examine a class of non-convex stochastic optimization problems which we call variationally coherent, and which properly includes pseudo-/quasiconvex and star-convex optimization problems. To solve such problems, we focus on the widely used stochastic mirror descent (SMD) family of algorithms (which contains stochastic gradient descent as a special case), and we show that the l...
متن کاملFastest Rates for Stochastic Mirror Descent Methods
Relative smoothness a notion introduced in [6] and recently rediscovered in [3, 18] generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.05681 شماره
صفحات -
تاریخ انتشار 2017